
Numerical experiments carried out with a wide class of functions showed results simi- 
lar to those above and confirmed the reliability and effectiveness of the method. 

NOTATION 

A, Laplacian operator; Au = 32u/3x 2 + 32u/3y2; F, boundary of the rectangle. 
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FINITE-ELEMENT CALCULATIONS ON NONSTATIONARY 

HEAT TRANSFER 

A. M. Anikeenko and O. N. Litvin UDC 532.529:518:517.946.9 

A finite-element technique has been used in solving a boundary-value problem 
for a two-dimensional nonstationary turbulent-diffusion equation. 

The deposition and transport of particles in a flow of liquid can be described by a 
turbulent-diffusion equation if the concentration of the solid is low and the particles are 
sufficiently small. Rose [1] has defined the limits to the application of the diffusion 
theory with regard to particle size by experiment. 

The models of [2,3] are relevant to the description of these processes, and some fea- 
tures of these are used here. The model of [3] describes the steady-state deposition of a 
solid material in a planar semiinfinite channel in the form of a boundary-value problem for 
a stationary equation in turbulent diffusion. A numerical solution was obtained by finite- 
difference methods and this is compared with experiment. Other studies [4-6] deal with 
models for water quality, in which the equations of hydrodynamics and turbulent diffusion 
are employed. 

There are also other discussions [7-9] of nonstationary equations for turbulent diffu- 
sion; it has been suggested [8,9] that Galerkin's method should be used together with the 
finite-element technique, and the relevant systems of equations have been derived, but nu- 
merical treatments have been given only for the one-dimensional case [9] and for the two- 
dimensional case but neglecting convective terms [8]. In [7] we find a solution to a two- 
dimensional boundary-value problem subject to homogeneous Dirichlet conditions on the assump- 
tion that the turbulent-diffusion coefficients are constants and that there is a source of 
the minor component within the region only at the start. 

Here we consider a model for the transport and deposition of a material suspended in a 
planar flow; weassume that the velocity components and the turbulent-diffusion coefficients 
are known functions of time and the coordinates, in which case the model can be represented 
as a boundary-value problem: 

Oc' Od Oc' 0c' 
+ u ~,  z, t')--=- + W(x, z, t ' ) - : - -  + ~' - 

Ot ~ Oz Ox o z  
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a D. (x, z, r)  ac' a ac" F' = ~ x  -~x + ~-z D, (x, z,, r) 7 z  + (x, z, r), (x, z, r) ~ ~, n {t' > o}, 

~21={(x, z ) : O < x < L ,  H(x)<z<O}, 
r~: c' (0, z, r )  = co (z, t'), H (0) ~ z ~ O, 

r2: Dz Oc' (X,ozZ, t') lz=o= e'c' (x, O, t'), O ~ x ~ L, 

rs:D~ ac'(x, z, t') t =o, H ( L ) < ~ z ~ 0 ,  
a X  x-~L 

(~) 

(2) 

(3) 

(4) 

{z--H(x) 
ac' ac' cosin, 0z) =(1--c0co 'c ' ix ,  H(x), t') r,: [O x ~x  cos (n, Ox) + Dz ~Oz' (5) 

subject to the initial conditions 

c' (x, z, O) = V (x, z) (6) 
(the origin is taken on the free surface, while the 0x axis is directed along the main flow, 
and 0z is upwards). 

For simplicity, we consider the problem of (I)-(6) for a planar channel with H(x) - 
const = --H; then W = 0 and the distribution of the velocity U may be taken as logarithmic or 
some other empirical form [14]. 

We introduce the scale factors U = UmU~. ~' = Um~, x = Lxl. z = Lx2. D x = D,LU.. D z = 
D~LU.. c' = clc. t' = (L/Um)t to reduce the equations of (I)-(6) to dimensionless form: 

2 

Oc Oc ac vi-~ a Oc 
aT + v, ix,, x,, t) ~ + ~ a~-- = ~ ~,=, ~ D, (~,, x2, o ~ + 

+ ~F (x. x2, t), 
(xt, x~, t )Ef~fl{t>0},  .Q= {(xo x 2 ) : 0 < x t <  1. --H/L<x~<O}, (7) 

c(O, x~_, t )=  co(x~, t), - -M/L~x~ .~O,  (8) 

~Dt Ocix~, Xz, t) I =0, --H/L-~x.<~ O, (9) 
OXi x,=l 

ac (x. x2, t) ] (i o) ~v~ ax2 ,x.=o = osc (xi, O, t), 0 ~ xt <~ L, 

f~Dz Oc(xi, x2, t) l =(1--cz)ox:(xt, --H/L, t), O ~ x t ~ L ,  (I1) 
H Ox2 Ix'------ "L" 

c(x,, x2, o ) = , ( x t ,  x2), (12) 

where 8 = U*/U m, BI = L/(Umc,). 

The results of [10] are then used to reduce (7)-(|2) to minimization of 

I it) = D, + U, ~ c + ,o a,.-~ 

I 1 

I (1 - -a )  oC z X i , - -  t d.xt __. o.~c2(xt, O, t) dxi (13) + &* --f; iF c dx tdxz+ - -~  L ' 2 
0 0 

in a class of functions c(xx. x2. t) that satisfy the conditions of (8) and (12); here super- 
script 0 denotes the desired variables, which are not used in variation in the local-poten- 
tial method in (13). 

In the finite-element method, we divide the region ~ into rectangular finite elements 
uniformly along the 0xz and 0x~ direction by means of a grid having steps of Az and A=, 
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respectively. The solution is sought in the class of functions that satisfy (8): 

1,1 

where hi(x~/A~), hj(xz/Az) are finite piecewise-linear functions of the type 

�9 T a-p-1 

for which the following inequality can be proved [II]: 

where K(t) is a function independent of A, and A = max (Ax, 
the following features: 

c(x~, x2q, t ) = C v q ( t  ), V(x~, x2~)6~ , x ~ r = p A p  

The functions Uz(x~, x2, t), Di(xx, x2, t), i = I, 2, F(x~, x2, t) 
same form as the function c(xz, x2, t): 

We substitute (14) 

Xi 

h2); note that ~(xz, x2, t) has 

i = I, 2. 

are represented in the 

(14) 

(15) 

(16) 

(13) and equate the derivatives 31(t)/3Cv~(t), ~ = I,N. 

~pq (t) hp hq , 
p,q 

 (0h, x, , i = 1 , 2 ,  
P,q 

'p,q 

and (16) i n t o  
= i, M to zero to get a Cauchy problem for the system of ordinary differential equa- 

tions : 

A dC (t) + BC (t) ----- �9 (t), (17) 
dt 

where C(t) = (Cz1(t) .... , CIN(t) .... , CM1(t), .... CMN(t)) T, Cpq(0) = ~(Xzp, X2q), V (Xlp, 
X2q) E~; hereA and B are matrices of dimensions MN whose elements are, respectively, 

aILW(V_IIN,i+(I_I)N = ~ y Oll(Xt, I2 )Ol tv (Xl ,  xz) dxidx~, 
fl 

bl. t+lv_ l ) N , i + ( i _ l )  N = r~.pq (t) Oxl P,q = t~ 

O0~,(x,, x~) X 
Ox~ 

f l  

! 

O..(x,, x2)dx,dxz + I6~ (1-- a) - -  6~MI h, ~ /~ ~ dx, ; 
i 
0 

X O.v(xi, x2) dxidxz} +~{y~  OOil(xl'oxz x2) 

and 0(t) is a column vector having the components 

Cpg.+(v--t)N = Z ~tf'q(t) y~ O,q (X,, x~) O~.(Xt, x~) dx,dxz, 
P,q fl 

O,~,(x,, xz)=h, (x-~)hi {-~-~-2), I x =  1 , - N , v = l ,  M, 

i, p : ~ - - l - k 6 a t ,  ~ + 1 - - 6 ~ ,  ], q = v - - l + 6 , t ,  v + l - - 6 v ~ ;  

and C(t)  i s  the  column v e c t o r  fo r  the  unknown f u n c t i o n s .  A nove l  a l g o r i t h m  f o r  i n c o r p o r a t i n g  
(8) was used in  s o l v i n g  (17). 
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An Algol program for the BESM-6 has been written to solve (7)-(12). 

Various difficulties arise in solving this type of problem [15], which cannot be dis- 
cussed here; a standard procedure (RUKUT) was used in solving (;7) for integrating ordinary 
differential equations by the Runge--Kutta method, with automatic step-size choice. The 
choice is designed to provide a reasonably stable computation, and the results confirm that 
this is so. 

The following are some numerical results. 

Example I. The algorithm was checked out by solving (7)-(12) with 

~lF = ~ (1 -- x,) exp (-- ~ )  -- Ul [1 -- exp (-- Zt)l, 

Co (~,  t) = 1 - -  exp ( - -  M), 

c(1, xz, t)=O, ~Oz Oc..i =0, ~Oz O__c_c !l =0, 
Ox~ ix==o O~ Ix,=-n,,L 

and $(xx, x2) = 0, which has the exact solution c = (I --xt)[l --exp(--),t)]; in that case, 
the steady-state longitudinal velocity distribution is given in [14, p. I00], viz., Uav = 
0.02 m/set, Um = 0.025 m/set, where DI and D= are constants: DI = 0.4"I0 -S, D2 = 0.1237- 
10 -5 . Table 1 shows that the approximate solution is essentially the same as the accurate 
one. The run time was 8 min. 

Example 2. Problem (7)-(12) was solved for L = I000 m, H = 1.75 m to give the longi- 
tudinal velocity distribution as in Example I, with a = 0.5, --w = 0.00252, ,(0, x2) = I; 
$(xz, x2) = 0, (xx > 0); the coefficients D x and Dz were taken as the following constants 
[12,13]: 

D= = 0.22HU,,  D~ = 0.068HU.. (1 8) 

We a l s o  s o l v e  t h e  s t a t i o n a r y - s t a t e  p r o b l e m  c o r r e s p o n d i n g  t o  ( 7 ) - ( 1 2 ) ,  f o r  which  s i m i l a r  
s t e p s  g i v e  t h e  s y s t e m  o f  a l g e b r a i c  e q u a t i o n s  

BC = | 

I f  t i s  s u f f i c i e n t l y  l a r g e  ( t  = 2 ) ,  t h e  s o l u t i o n  to  t h e  n o n s t a t i o n a r y  p r o b l e m  a p p r o a c h e s  
Chat f o r  t h e  s t a t i o n a r y  one  ( T a b l e  2) .  The run  t i m e  was 4 min f o r  t h e  s t a t i o n a r y  p r o b l e m  
w i t h  t h e  r e g i o n  d i v i d e d  i n t o  72 f i n i t e  e l e m e n t s  (91 n o d e s ) ,  as  a g a i n s t  8 min f o r  the  n o n s t a -  
t i o n a r y  c a s e .  

Example  3. The p r o b l e m  o f  [3] was s o l v e d  f o r  t he  s t a t i o n a r y  c a s e  in o r d e r  to  check  the  
a l g o r i t h m .  F i g u r e  l shows t h a t  o u r  f i n i t e - e l e m e n t  s o l u t i o n  a g r e e s  w i t h  t he  f i n i t e - d i f f e r e n c e  
s o l u t i o n  o f  [3] ( t h e  o r i g i n  was s e t  a t  t h e  b o t t o m ,  x2 = z /H in  [ 3 ] ) .  The model  used  f o r  t h e  
s t e a d y  s t a t e  in  Example  2 was a l s o  checked  by u s i n g  the  c o n s t a n t  c o e f f i c i e n t s  of  ( 1 8 ) ,  as  
well as with 

Dx=O.22HU., Dz~kU*z(l + # )  �9 (19) 

Figure I shows the results. The solution with the coefficients of (19) coincides within the 
accuracy allowed by the graph with our finite-element solution of [3], which indicates that 
the Dz distribution derived by experiment in [3] is only slightly better than that provided 
by (19). Figure I also shows that the Dz averaged over the depth of (18) gives entirely 
satisfactory results. All the results obtained in this example were with ~ divided into I00 
finite elements (124 nodes). The run time for one form was 5 min. 

Example 4. Finally we give results from numerical solution of (7)-(12) with Co(X2, t) = 
exp(---%t) and with the Ux and coefficients Di, i = I, 2, and initial conditions of Example 2, 
with a = 0.5; Fig. 2 gives the results. 

The model has been checked out on experimental data (Example 3), because the algorithm 
was written for a reasonably general case (variable D x and Dz, various U and W as functions 
of time and coordinate), so it can be used in numerous practical instances. For instance, 
Examples 2 and 4 are derived from attempts to forecast the distribution and deposition of 
suspended matter in a fairly broad channel or extended pond. Solutions to such problems in- 
dicate ways of preventing silting-up in irrigation systems and reservoirs. In hydroelectric 
power engineering, the content of solid matter in the water has a considerable effect on the 
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TABLE l .  Lengthwise Concentration Distribution (Example l ) ,  
X = 10 and  t = 1 

x t  0 I / 6  2/6 3/6 4 / 6  5/6 1 
I 

A pproximate 
solution 

Exact 

O, 9999546 
O, 9999546 

O, 8332941 

0,8332955 

0, 6666438 1 0,49998020,33332690, 666570 
0,6666364 0,4999773 0,3333182 0,1666591 

TABLE 2. Results from Numerical Solution of the Nonstationary 
Problem (A) and Stationary Problem (B) of Example 2 

xt  

T y ~  x, 
0 I / 6  2/6 3/6 4/6 5/6 I 

A 
B 

A 
B 

A 
B 

A 
B 
A 
B 

A 
B 

A 
B 

--H, 

--2// 

--5H 

1 
1 

I 
1 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

0,3172 
0,3151 
O, 5159 
0,4959 
0,6989 
0,6894 
0,8494 
0,8511 
o,9918 
1,0027 

1,1911 
1,2098 
1 ,5460  
1,5558 

O, 1809 
O, 1786 
0,3034 
0,2993 
0,4482 
0 , 4 4 4 9  

0,6145 
0., 61"20 
0,8054 
O, 8059 
1,0387 

. 1,0435 
1,3636 
1,3688 

~),1171 
O, 1163 
0,1996 
D, 1983 
O, 3062 
0,3048 
O, 4388 
O, 4377 
O, 5996 
O, 5990 
O, 7929 
O, 7927 
1,0454 
I, 0453 

0,0805 
0,0801 
O, 1380 
O, 1374 
0,2151 
0,2142 
0,3136 
0,3125 
0, 4353 
0,4338 
O, 5805 
O, 5789 
O, 7667 
0,7642 

0,0569 
0,0564 
O, 0972 
0,0970 
0,1530 
O, 1590 
0,2239 
0,2231 
0,3131 
O, 3114 
0,4182 
0,4166 

Of 5532 
0,5504 

0,0410 
0,040I 
0,0686 
0,0689 
0,1096, 
O, 1083, 
O, 1594 
O, 1594 
O, 2247 
O, 2230 
0,2990 
0,2984 
0, 3970 
0, 3943 

q8 s.~ z. 2 

o,~ ,'~ , /  2 o , 

I 
0 I 2. 0 1 0 f 2 0 I c 

F i g .  ] .  Dep th  d i s t r i b u t i o n  o f  suspended m a t t e r  (Example 3 ) :  
a) a t  i n l e t  (xz  = 0 ) ;  b - d )  f o r  xz = 0 . 1 3 5 ] ,  0 .2696 ,  0 . 6804 ,  r e -  
s p e c t i v e l y ;  t h e  p o i n t s  a re  f rom e x p e r i m e n t  [3] ; l )  f i n i t e -  
d i f f e r e n c e  s o l u t i o n  [ 3 ] ;  2,  3)  ou r  s o l u t i o n  (D x and D z i n  
accordance with (18)). 

F i g .  2. D i s t r i b u t i o n s  o f  s u s p e n d e d - m a t t e r  c o n c e n t r a t i o n  f o r  
t = 1 (a )  and  t = 4 . 5  (b) (Example  4 ) .  
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working life of the turbines, and here the prediction of the behavior of solid material is 
particularly important. 

NOTATION 

~z, domain of spatial variables with boundary F; F, and F3, boundary segments parallel 
to Oz (inlet and outlet, respectively); F2, free surface; F~, bottom of contour; n, direc- 
tion of the exterior normal to the boundary of ~,; L and H, channel length and depth; x and 
z, horizontal and vertical coordinates; t', time; U and W, horizontal and vertical velocity 
components; c', impurity concentration; ~', hydraulic parameter; D x and Dz, turbulent-diffu- 
sion coefficients; F', source (sink) function; 0 ~ ~ ~ I, bottom-absorption coefficient; U,, 
dynamic velocity, Um, free-surface value of u; Uav , average value of u; c,, characteristic 
inlet value of impurity concentration; A,(A2), step size along 0x:(Ox2); ~ij, Kronecker 
symbol; k, Karman constant, 
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CHARACTERISTIC METHOD IN HEAT TRANSPORT IN FAST 

NONSTATIONARY PROCESSES 

V. A. Makagonov UDC 536.2 

The characteristic method has been used in numerical solution of a hyperbolic 
heat-transport equation. 

The following hyperbolic equation is involved in heat-transfer calculation for fast non- 
stationary processes of one-dimensional type: 

aT a2T a2T 
cp -~- + cp~ a~ = ~ 0x ~- ( I ) 

subject to the appropriate initial and boundary conditions. As a rule, the boundary condi- 
tions are nonlinear, and then there are major difficulties in obtaining an analytic solution. 
A network method (explicit difference scheme) has been used [I] to solve (1). Studies have 
been made [2,3] on the construction of difference schemes for equations of hyperbolic type 
on the basis of characteristic relationships, particularly with regard to the stability; 
here we show that the characteristic method can be applied in heat-transfer calculations for 
fast nonstationary processes. 

We first put 
OT OT 

V = ~ W =  Ox (1) 
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