Numerical experiments carried out with a wide class of functions showed results similar to those above and confirmed the reliability and effectiveness of the method.

NOTATION

Δ, Laplacian operator; $\Delta u=\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2} ; \Gamma$, boundary of the rectangle.

LITERATURE CITED

1. R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary-Value Problems, Amer. Elsevier (1965).
2. A. I. Panarin and V. V. Shchennikov, "Tensor uncoupling of multidimensional difference boundary-value problems," in: Mathematical Physics, No. 3, Moscow State Pedagogical Institute, Moscow (1976), p. 183.
3. V. S. Drovozyuk and N. Ya. Lyashchenko, "Numerical solution for a first boundary-value problem for a nonlinear Poisson equation," in: Computational and Applied Mathematics, No. 15, Kiev State Univ. (1971).

FINITE-ELEMENT CALCULATIONS ON NONSTATIONARY

HEAT TRANSFER
A. M. Anikeenko and 0. N. Litvin

UDC 532.529:518:517.946.9

A finite-element technique has been used in solving a boundary-value problem for a two-dimensional nonstationary turbulent-diffusion equation.

The deposition and transport of particles in a flow of liquid can be described by a turbulent-diffusion equation if the concentration of the solid is low and the particles are sufficiently small. Rose [1] has defined the limits to the application of the diffusion theory with regard to particle size by experiment.

The models of $[2,3]$ are relevant to the description of these processes, and some features of these are used here. The model of [3] describes the steady-state deposition of a solid material in a planar semiinfinite channel in the form of a boundary-value problem for a stationary equation in turbulent diffusion. A numerical solution was obtained by finitedifference methods and this is compared with experiment. Other studies [4-6] deal with models for water quality, in which the equations of hydrodynamics and turbulent diffusion are employed.

There are also other discussions [7-9] of nonstationary equations for turbulent diffusion; it has been suggested [8,9] that Galerkin's method should be used together with the finite-element technique, and the relevant systems of equations have been derived, but numerical treatments have been given only for the one-dimensional case [9] and for the twodimensional case but neglecting convective terms [8]. In [7] we find a solution to a twodimensional boundary-value problem subject to homogeneous Dirichlet conditions on the assumption that the turbulent-diffusion coefficients are constants and that there is a source of the minor component within the region only at the start.

Here we consider a model for the transport and deposition of a material suspended in a planar flow; we assume that the velocity components and the turbulent-diffusion coefficients are known functions of time and the coordinates, in which case the model can be represented as a boundary-value problem:

$$
\frac{\partial c^{\prime}}{\partial t^{\prime}}+U\left(x, z, t^{\prime}\right) \frac{\partial v^{\prime}}{\partial x}+W\left(x, z, t^{\prime}\right) \frac{\partial c^{\prime}}{\partial z}+\omega^{\prime} \frac{\partial c^{\prime}}{\partial z}=
$$

[^0]\[

$$
\begin{gather*}
=\frac{\partial}{\partial x} D_{x}\left(x, z, t^{\prime}\right) \frac{\partial c^{\prime}}{\partial x}+\frac{\partial}{\partial z} D_{z}\left(x, z, t^{\prime}\right) \frac{\partial c^{\prime}}{\partial z}+F^{\prime}\left(x, z, t^{\prime}\right),\left(x, z, t^{\prime}\right) \in \Omega_{1} \cap\left\{t^{\prime}>0\right\}, \tag{1}\\
\Omega_{1}=\{(x, z): 0<x<L, H(x)<z<0\}, \\
\Gamma_{1}: c^{\prime}\left(0, z, t^{\prime}\right)=c_{0}\left(z, t^{\prime}\right), H(0) \leqslant z \leqslant 0, \tag{2}\\
\Gamma_{2}:\left.D_{z} \frac{\partial c^{\prime}\left(x, z, t^{\prime}\right)}{\partial z}\right|_{z=0}=\omega^{\prime} t^{\prime}\left(x, 0, t^{\prime}\right), 0 \leqslant x \leqslant L, \tag{3}\\
\Gamma_{3}:\left.D_{x} \frac{\partial c^{\prime}\left(x, z, t^{\prime}\right)}{\partial x}\right|_{x=L}=0, H(L) \leqslant z \leqslant 0, \tag{4}\\
\Gamma_{4}:\left[D_{x} \frac{\partial c^{\prime}}{\partial x} \cos (n, 0 x)+D_{z} \frac{\partial c^{\prime}}{\partial z} \cos (n, 0 z)\right]_{z=H(x)}^{!}=(1-a) \omega^{\prime} c^{\prime}\left(x, H(x), t^{\prime}\right) \tag{5}
\end{gather*}
$$
\]

subject to the initial conditions

$$
\begin{equation*}
c^{\prime}(x, z, 0)=\varphi^{\prime}(x, z) \tag{6}
\end{equation*}
$$

(the origin is taken on the free surface, while the 0 x axis is directed along the main flow, and $0 z$ is upwards).

For simplicity, we consider the problem of (1)-(6) for a planar channel with $H(x) \equiv$ const $=-H$; then $W=0$ and the distribution of the velocity U may be taken as logarithmic or some other empirical form [14].

We introduce the scale factors $U=U_{m} U_{1}, \omega^{\prime}=U_{m^{\omega}}, x=L x_{1}, z=L x_{2}, D_{x}=D_{1} L U_{k}, D_{z}=$ $D_{2} L_{*}, c^{\prime}=c_{2} c, t^{\prime}=\left(L / U_{m}\right) t$ to reduce the equations of (1)-(6) to dimensionless form:

$$
\begin{gather*}
\frac{\partial c}{\partial t}+U_{1}\left(x_{1}, x_{2}, t\right) \frac{\partial c}{\partial x_{1}}+\omega \frac{\partial c}{\partial x_{2}}=\beta \sum_{i=1}^{2} \frac{\partial}{\partial x_{l}} D_{l}\left(x_{1}, x_{2}, t\right) \frac{\partial c}{\partial x_{l}}+ \\
+\beta \beta_{1} F\left(x_{1}, x_{2}, t\right), \\
\begin{array}{c}
\left(x_{1}, x_{2}, t\right) \in \Omega \cap\{t>0\}, \quad \Omega=\left\{\left(x_{1}, x_{2}\right): 0<x_{1}<1, \quad-H / L<x_{2}<0\right\}, \\
c\left(0, x_{2}, t\right)=c_{0}\left(x_{2}, t\right), \quad-H / L \leqslant x_{2} \leqslant 0, \\
\left.\beta D_{2} \frac{\partial c\left(x_{1}, x_{2}, t\right)}{\partial x_{1}}\right|_{x_{1}=1}=0,-H / L \leqslant x_{2} \leqslant 0, \\
\left.\beta D_{2} \frac{\partial c\left(x_{1}, x_{2}, t\right)}{\partial x_{2}}\right|_{x_{1}=0}=\omega c\left(x_{1}, 0, t\right), \quad 0 \leqslant x_{1} \leqslant L, \\
\left.\beta D_{2} \frac{\partial c\left(x_{1}, x_{2}, t\right)}{\partial x_{2}}\right|_{x_{2}=-\frac{H}{L^{-}}}=(1-\alpha) \omega c\left(x_{1},-H / L, t\right), \quad 0 \leqslant x_{1} \leqslant L, \\
c\left(x_{1}, x_{2}, 0\right)=\psi\left(x_{1}, x_{2}\right),
\end{array} \tag{7}
\end{gather*}
$$

where $\beta=U_{*} / U_{m}, \beta_{1}=L /\left(U_{m} c_{1}\right)$.
The results of [10] are then used to reduce (7)-(12) to minimization of

$$
\begin{gather*}
I(t)=\iint_{Q}\left\{\sum_{i=1}^{2} \frac{\beta}{2} D_{l}\left(\frac{\partial c}{\partial x_{l}}\right)^{2}+U_{1} \frac{\partial c^{0}}{\partial x_{1}} c+\omega \frac{\partial c^{0}}{\partial x_{2}} c+\right. \\
\left.+\left(\frac{\partial c^{0}}{\partial t}-\beta_{1} F\right) c\right\} d x_{1} d x_{2}+\frac{1}{2} \int_{0}^{1}(1-\alpha) \omega c^{2}\left(x_{1},-\frac{H}{L}, t\right) d x_{1}-\frac{1}{2} \int_{0}^{1} \omega c^{2}\left(x_{1}, 0, t\right) d x_{1} \tag{13}
\end{gather*}
$$

in a class of functions $c\left(x_{1}, x_{2}, t\right)$ that satisfy the conditions of (8) and (12); here superscript 0 denotes the desired variables, which are not used in variation in the local-potential method in (13).

In the finite-element method, we divide the region Ω into rectangular finite elements uniformly along the $0 x_{1}$ and $0 x_{2}$ direction by means of a grid having steps of Δ_{2} and Δ_{2},
respectively. The solution is sought in the class of functions that satisfy (8):

$$
\begin{equation*}
\tilde{c}\left(x_{1}, x_{2}, t\right)=\sum_{i, i} C_{i j}(t) h_{i}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{j}\left(\frac{x_{2}}{\Delta_{2}}\right), \tag{14}
\end{equation*}
$$

where $h_{i}\left(x_{1} / \Delta_{1}\right), h_{j}\left(x_{2} / \Delta_{2}\right)$ are finite piecewise-1inear functions of the type

$$
\begin{equation*}
h_{p}\left(\frac{x_{i}}{\Delta_{i}}\right)=\frac{1}{2}\left(\left|\frac{x_{i}}{\Delta_{i}}-p-1\right|-2\left|\frac{x_{i}}{\Delta_{i}}-p\right|+\left|\frac{x_{i}}{\Delta_{i}}-p+1\right|\right), \tag{15}
\end{equation*}
$$

for which the following inequality can be proved [11]:

$$
\|c-\bar{c}\|_{L_{2}(\Omega)} \leqslant K(t) \Delta^{2},
$$

where $K(t)$ is a function independent of Δ, and $\Delta=\max \left(\Delta_{1}, \Delta_{2}\right)$; note that $\widetilde{c}\left(x_{1}, x_{2}, t\right)$ has the following features:

$$
\bar{c}\left(x_{1 p}, x_{2 q^{\prime}}, t\right)=C_{p_{q}}(t), \quad \forall\left(x_{1 p}, x_{2 q}\right) \in \bar{\Omega}, x_{i_{p}}=p \Delta_{\mathbf{i}}, \quad i=1,2 .
$$

The functions $U_{1}\left(x_{1}, x_{2}, t\right), D_{i}\left(x_{1}, x_{2}, t\right), i=1,2, F\left(x_{1}, x_{2}, t\right)$ are represented in the same form as the function $c\left(x_{1}, x_{2}, t\right)$:

$$
\begin{gather*}
\tilde{U}_{1}\left(x_{1}, x_{2}, t\right)=\sum_{p, q} U_{p q}^{(1)}(t) h_{p}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{q}\left(\frac{x_{2}}{\Delta_{2}}\right), \\
\widetilde{D}_{i}\left(x_{1}, x_{2}, t\right)=\sum_{p, q} D_{p q}^{(t)}(t) h_{p}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{q}\left(\frac{x_{2}}{\Delta_{2}}\right), \quad i=1,2, \tag{16}\\
\tilde{F}\left(x_{1}, x_{2}, t\right)=\sum_{p, q} f_{p q}(t) h_{p}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{q}\left(\frac{x_{2}}{\Delta_{2}}\right) .
\end{gather*}
$$

We substitute (14) and (16) into (13) and equate the derivatives $\partial \mathrm{I}(\mathrm{t}) / \partial \mathrm{C}_{\mu \nu}(\mathrm{t}), \mu=\overline{1, N}$, $v=\overline{1, M}$ to zero to get a Cauchy problem for the system of ordinary differential equations:

$$
\begin{equation*}
A \frac{d \mathbf{C}(t)}{d t}+B \mathbf{C}(t)=\boldsymbol{\Phi}(t) \tag{17}
\end{equation*}
$$

where $\underline{C}(t)=\left(C_{1 I}(t), \ldots, C_{1 N}(t), \ldots, C_{M 1}(t), \ldots, C_{M N}(t)\right)^{T}, C_{p q}(0)=\psi\left(x_{1 p}, x_{2 q}\right), \forall\left(x_{1 p}\right.$, $\left.x_{2 q}\right) \in \bar{\Omega}$; here A and. B are matrices of dimensions \mathbb{N} whose elements are, respectively,

$$
\begin{gathered}
a_{\mu+(v-1) N, i+(i-1) N}=\iint_{\Omega} \Theta_{i j}\left(x_{1}, x_{2}\right) \Theta_{\mu v}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}, \\
b_{\mu+(v-1) N, i+(j-1) N}=\sum_{p, q}\left\{\sum_{i=1}^{2} \beta D_{p q}^{(l)}(t) \iint_{\Omega} \frac{\partial \Theta_{i j}\left(x_{1}, x_{2}\right)}{\partial x_{l}} \Theta_{p_{q}}\left(x_{1}, x_{2}\right) \times\right. \\
\times \frac{\partial \Theta_{\mu v}\left(x_{1}, x_{2}\right)}{\partial x_{l}} d x_{1} d x_{2}+U_{p q}^{(1)}(t) \iint_{\Omega} \frac{\partial \Theta_{i j}\left(x_{1}, x_{2}\right)}{\partial x_{1}} \Theta_{p_{q}}\left(x_{1}, x_{2}\right) \times
\end{gathered}
$$

$$
\left.\times \Theta_{\mu v}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}\right\}+\omega\left\{\iint_{\Omega} \frac{\partial \Theta_{i j}\left(x_{1}, x_{2}\right)}{\partial x_{2}} \Theta_{\mu v}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}+\left[\delta_{v 1}(1-\alpha)-\delta_{v M}\right] \int_{0}^{1} h_{i}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{\mu}\left(\frac{x_{1}}{\Delta_{1}}\right) d x_{1}\right\} ;
$$

and $\Phi(t)$ is a column vector having the components

$$
\begin{gathered}
\varphi_{\mu+(v-i) N}=\sum_{p, q} \beta_{1} f_{p q}(t) \iint_{\Omega} \Theta_{p_{q}}\left(x_{1}, x_{2}\right) \Theta_{\mu v}\left(x_{1}, x_{2}\right) d x_{1} d x_{2}, \\
\Theta_{i j}\left(x_{1}, x_{2}\right)=h_{i}\left(\frac{x_{1}}{\Delta_{1}}\right) h_{j}\left(\frac{x_{2}}{\Delta_{2}}\right), \quad \mu=\overline{1, N}, v=\overline{1,} M, \\
i, p=\overline{\mu-1+\delta_{\mu i}, \mu+1-\delta_{\mu N}}, \quad i, q=\overline{v-1+\delta_{v 1}, v+1-\delta_{v M}} ;
\end{gathered}
$$

and $C(t)$ is the column vector for the unknown functions. A novel algorithm for incorporating (8) was used in solving (17).

An Algol program for the BESM-6 has been written to solve (7)-(12).
Various difficulties arise in solving this type of problem [15], which cannot be discussed here; a standard procedure (RUKUT) was used in solving (17) for integrating ordinary differential equations by the Runge-Kutta method, with automatic step-size choice. The choice is designed to provide a reasonably stable computation, and the results confirm that this is so.

The following are some numerical results.
Example 1. The algorithm was checked out by solving (7)-(12) with

$$
\begin{gathered}
\beta_{1} F=\lambda\left(1-x_{1}\right) \exp (-\lambda t)-U_{1}[1-\exp (-\lambda t)], \\
c_{0}\left(x_{2}, t\right)=1-\exp (-\lambda t), \\
c\left(1, x_{2}, t\right)=0,\left.\quad \beta D_{2} \frac{\partial c}{\partial x_{2}}\right|_{x_{2}=0}=0,\left.\quad \beta D_{2} \frac{\partial c}{\partial x_{2}}\right|_{x_{2}=-H / L}=0,
\end{gathered}
$$

and $\psi\left(x_{1}, x_{2}\right)=0$, which has the exact solution $c=\left(1-x_{1}\right)[1-\exp (-\lambda t)]$; in that case, the steady-state longitudinal velocity distribution is given in [14, p. 100], viz., $\mathrm{U}_{\mathrm{av}}=$ $0.02 \mathrm{~m} / \mathrm{sec}, U_{m}=0.025 \mathrm{~m} / \mathrm{sec}$, where D_{1} and D_{2} are constants: $D_{1}=0.4 \cdot 10^{-5}, D_{2}=0.1237$. 10^{-5}. Table 1 shows that the approximate solution is essentially the same as the accurate one. The run time was 8 min .

Example 2. Problem (7)-(12) was solved for $L=1000 \mathrm{~m}, \mathrm{H}=1.75 \mathrm{~m}$ to give the longitudinal velocity distribution as in Example 1, with $\alpha=0.5,-\omega=0.00252, \psi\left(0, x_{2}\right)=1$; $\psi\left(x_{1}, x_{2}\right)=0,\left(x_{1}>0\right)$; the coefficients D_{X} and D_{z} were taken as the following constants $[12,13]:$

$$
\begin{equation*}
D_{x}=0.22 H U_{*}, \quad D_{x}=0.068 H U_{*} . \tag{18}
\end{equation*}
$$

We also solve the stationary-state problem corresponding to (7)-(12), for which similar steps give the system of algebraic equations

$$
B C=\Phi .
$$

If t is sufficiently large ($t=2$), the solution to the nonstationary problem approaches that for the stationary one (Table 2). The run time was 4 min for the stationary problem with the region divided into 72 finite elements (91 nodes), as against 8 min for the nonstationary case.

Example 3. The problem of [3] was solved for the stationary case in order to check the algorithm. Figure 1 shows that our finite-element solution agrees with the finite-difference solution of [3] (the origin was set at the bottom, $x_{2}=z / H$ in [3]). The model used for the steady state in Example 2 was also checked by using the constant coefficients of (18), as well as with

$$
\begin{equation*}
D_{x}=0.22 H U_{*}, \quad D_{z}=k U_{*} z\left(1+\frac{z}{H}\right) . \tag{19}
\end{equation*}
$$

Figure 1 shows the results. The solution with the coefficients of (19) coincides within the accuracy allowed by the graph with our finite-element solution of [3], which indicates that the D_{z} distribution derived by experiment in [3] is only slightly better than that provided by (19). Figure 1 also shows that the D_{z} averaged over the depth of (18) gives entirely satisfactory results. All the results obtained in this example were with Ω divided into 100 finite elements (124 nodes). The run time for one form was 5 min .

Example 4. Finally we give results from numerical solution of (7)-(12) with $c_{0}\left(x_{2}, t\right)=$ $\exp (-\overline{\lambda t})$ and with the U_{1} and coefficients $D_{i}, i=1,2$, and initial conditions of Example 2, with $\alpha=0.5$; Fig. 2 gives the results.

The model has been checked out on experimental data (Example 3), because the algorithm was written for a reasonably general case (variable D_{x} and D_{z}, various U and W as functions of time and coordinate), so it can be used in numerous practical instances. For instance, Examples 2 and 4 are derived from attempts to forecast the distribution and deposition of suspended matter in a fairly broad channel or extended pond. Solutions to such problems indicate ways of preventing silting up in irrigation systems and reservoirs. In hydroelectric power engineering, the content of solid matter in the water has a considerable effect on the

TABLE 1. Lengthwise Concentration Distribution (Example 1), $\lambda=10$ and $t=1$

x_{1}	0	$1 / 6$	$2 / 6$	$3 / 6$	$4 / 6$	$5 / 6$	1
A pproximate solution Exact	0,9999546	0,8332941	0,6666438	0,4999802	0,3333269	0,1666570	0
	0,9999546	0,8332955	0,6666364	0,4999773	$0,3333182,0,1666591$	0	

TABLE 2. Results from Numerical Solution of the Nonstationary Problem (A) and Stationary Problem (B) of Example 2

Type	x_{1}	x_{1}						
		0	1/6	2/6	3/6	4/6	5/6	1
A	0	1	0,3172	0,1809	0,1171	0,0805	0,0569	0,0410
B	0	1	0,3151	0,1786	0,1163	0,0801	0,0564	0,0401
A	$-H / 6 L$	1	0,5159	0,3034	0,1996	0,1380	0,0972	0,0686
B		1	0,4959	0,2993	0,1983	0,1374	0,0970	0,0689
A	- Hi3L	1	0,6989	0,4482	0,3062	0,2151	0,1530	0,1096
B		1	0,6894	0.4449	0,3048	0,2142	0,1520	0,1083
A	- $H^{\prime} 2 \mathrm{~L}$	1	0,8494	0,6145	0,4388	0,3136	0.2239	0,1594
B		1	0,8511	0,6120	0,4377	0,3125	0,2231	0,1594
A	$-2 H / 3 L$	1	0,9918	0,8054	0,5996	0,4353	0,3131	0,2247
B		,	1,0027	0,8059	0,5990	0,4338	0,3114	0,2230
A	$-5 H / 6 L$	1	1,1911	1,0387	0,7929	0,5805	0,4182	0,2990
B		1	1,2093	1,0435	0,7927	0,5789	0,4166	0,2984
A	-HiL	,	1,5460	1,3636	1,0454	0,7667	0,5532	0,3970
		1	1,5558	1.3688	1,0453	0,7642	0,5504	0,3943

Fig. 1. Depth distribution of suspended matter (Example 3): a) at inlet $\left(x_{1}=0\right)$; b-d) for $x_{1}=0.1351,0.2696,0.6804$, respectively; the points are from experiment [3]; 1) finitedifference solution [3]; 2, 3) our solution (D_{x} and D_{z} in accordance with (18)).

Fig. 2. Distributions of suspended-matter concentration for $t=1$ (a) and $t=4.5$ (b) (Example 4).
working life of the turbines, and here the prediction of the behavior of solid material is particularly important.

NOTATION

Ω_{1}, domain of spatial variables with boundary $\Gamma^{\prime} ; \Gamma_{1}$ and Γ_{3}, boundary segments parallel to $0 z$ (inlet and outlet, respectively); Γ_{2}, free surface; Γ_{4}, bottom of contour; n, direction of the exterior normal to the boundary of $\Omega_{2} ; L$ and H, channel length and depth; x and z, horizontal and vertical coordinates; t^{\prime}, time; U and W, horizontal and vertical velocity components; c^{\prime}, impurity concentration; ω^{\prime}, hydraulic parameter; D_{x} and D_{z}, turbulent-diffusion coefficients; F^{\prime}, source (sink) function; $0 \leq \alpha \leq 1$, bottom-absorption coefficient; U_{*}, dynamic velocity, U_{m}, free-surface value of U; $U_{a v}$, average value of U; c_{1}, characteristic inlet value of impurity concentration; $\Delta_{1}\left(\Delta_{2}\right)$, step size along $0 x_{1}\left(0 x_{2}\right) ; \delta_{i j}$, Kronecker symbol; k, Karman constant.

LITERATURE CITED

1. M. A. Velikanov, The River-Bed Process [in Russian], GIFML, Moscow (1958).
2. K. Cecen and M. Sumer, Proc. 14th Congress IAHR, Vol. 1, 9 (1971).
3. H. E. Jobson and W. W. Sayre, Proc. ASCE, Hydrau1. 96, 1983 (1970).
4. O. F. Vasil'ev, Trans. Int. Inst. Systems Anal., 1, 106 (1974).
5. Zh. N. Kudryasheva, Inzh.-Fiz. Zh., 31, 105 (1976).
6. R. V. Pyaskovskii and V. N. Molchanov, Meteorol. Gidrol., No. 3, 68 (1976).
7. K. Muraoka and K. Nakatsuji, Technol. Repts. Osaka Univ., 24, 827 (1974).
8. R. T. Cheng and D. S. Hodge, J. Int. Assoc. Math. Geol., 8, 43 (1976).
9. R. Ariathurai and R. B. Krone, Proc. ASCE, Hydraul. Div., 102, 323 (1976).
10. I. Djarmati. Nonequilibrium Thermod ynamics [Russian translation], Mir, Moscow (1974).
11. G. Birkhoff, M. H. Schultz, and R. S. Varga, Numer. Math., 11, 232 (1968).
12. W. J. Elder, Fluid Mech., 5, 544 (1959).
13. K. Cecen, M. Bayazit, and \bar{M}. Sumer, Proc. 13th Congress IAHR, Vol. 4, 215 (1969).
14. A. V. Karaushev, River-Bed Hydraulics [in Russian], Gidrometeoizdat, Leningrad (1969).
15. J. Douglas and T. Dupont, Lect. Notes Phys., 58, 207 (1976).

CHARACTERISTIC METHOD IN HEAT TRANSPORT IN FAST

NONSTATIONARY PROCESSES

V. A. Makagonov

UDC 536.2

The characteristic method has been used in numerical solution of a hyperbolic heat-transport equation.

The following hyperbolic equation is involved in heat-transfer calculation for fast nonstationary processes of one-dimensional type:

$$
\begin{equation*}
c \rho \frac{\partial T}{\partial \tau}+c \rho \tau_{r} \frac{\partial^{2} T}{\partial \tau^{2}}=\lambda \frac{\partial^{2} T}{\partial x^{2}} \tag{1}
\end{equation*}
$$

subject to the appropriate initial and boundary conditions. As a rule, the boundary conditions are nonlinear, and then there are major difficulties in obtaining an analytic solution. A network method (explicit difference scheme) has been used [1] to solve (1). Studies have been made $[2,3]$ on the construction of difference schemes for equations of hyperbolic type on the basis of characteristic relationships, particularly with regard to the stability; here we show that the characteristic method can be applied in heat-transfer calculations for fast nonstationary processes.

We first put

$$
\begin{equation*}
V=\frac{\partial T}{\partial \tau}, \quad W=\frac{\partial T}{\partial x}, \tag{1}
\end{equation*}
$$

[^1]
[^0]: Kharkov Branch, All-Union Hydrogeology Research Institute. Translated from InzhenernoFizicheskii Zhurnal, Vol. 36, No. 6, pp. 1080-1087, June, 1979. Original article submitted January 30, 1978.

[^1]: Translated from Inzhenerno-Fizicheskii Zhurnal, Vo1. 36, No. 6, pp. 1088-1092, June, 1979. Original article submitted June 21, 1978.

